Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured in this study using a Vocus‐2R proton‐transfer reaction time‐of‐flight mass spectrometer in Pasadena, California, downwind of Los Angeles, in summer 2022. Relative to 2010, ambient concentrations of aromatic hydrocarbons have declined at a similar rate as carbon monoxide, suggesting reduced overall emissions from mobile sources. However, the ambient concentrations of oxygenated VOCs have remained similar or increased, suggesting a greater relative importance of oxidation products and other emission sources, such as volatile chemical products whose emissions are largely unregulated. Relative to 2010, the range of measured VOCs was expanded, including higher aromatics and additional volatile chemical products, allowing a better understanding of a wider range of emission sources. Emission ratios relative to carbon monoxide were estimated and compared with 2010 emission ratios. Average measured ozone concentrations were generally comparable between 2022 and 2010; however, at the same temperature, daytime ozone concentrations were lower in 2022 than 2010. Faster photochemistry was observed in 2022, with average hydroxyl radical exposure being ∼68% higher during midday (statistically significant at 95% confidence), although this difference reduces to ∼35% when comparing observations at ambient temperatures of 25–30°C only. Future trends in temperature are important in predicting ozone production.more » « less
-
Nucleon structure functions, as measured in lepton-nucleon scattering, have historically provided a critical observable in the study of partonic dynamics within the nucleon. However, at very large parton momenta, it is both experimentally and theoretically challenging to extract parton distributions due to the probable onset of nonperturbative contributions and the unavailability of high-precision data at critical kinematics. Extraction of the neutron structure and the d quark distribution have been further challenging because of the necessity of applying nuclear corrections when utilizing scattering data from a deuteron target to extract the free neutron structure. However, a program of experiments has been carried out recently at the energy-upgraded Jefferson Lab electron accelerator aimed at significantly reducing the nuclear correction uncertainties on the d quark distribution function at large partonic momentum. This allows leveraging the vast body of deuterium data covering a large kinematic range to be utilized for d quark parton distribution function extraction. In this Letter, we present new data from experiment E12-10-002, carried out in Jefferson Lab Experimental Hall C, on the deuteron to proton cross section ratio at large Bjorken . These results significantly improve the precision of existing data and provide a first look at the expected impact on quark distributions extracted from parton distribution function fits.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
